

Flood resilience

Motueka Catchment Collective hui: Understanding our catchment better

Dr. Alastair Clement – Team Leader Natural Hazards and Geomorphology

Flow of this talk

- What the natural hazards team does
- What is flood resilience?
- Resilience from smaller floods: potential of nature-based solutions
- High-level results from feasibility modelling
- Resilience from large floods: understand and avoid
- Future planning
- Summing up

Natural Hazards & Geomorphology team

- Understanding natural hazards across the District
 - Historic flood maps
 - Flood modelling
 - Photos from flood events
- Provide advice to a wide range of stakeholders
- Focus is typically on avoiding natural hazard impacts
 - Building Act hazard considerations ('hazard notices')
 - RMA s106 and the new s106A
- Thinking about climate change and longer timeframes is 'baked in' to everything we do

What is flood resilience?

Understanding

Avoiding Preparing

Our ability to avoid the effects of flooding and, where we can't avoid it, being well prepared, responding well, and recovering quickly from damaging flood events

Responding

Recovering

What is flood resilience?

Understanding

Avoiding

Preparing

Our ability to avoid the effects of flooding and, where we can't avoid it, being well prepared, responding well, and recovering quickly from damaging flood events

Responding

Recovering

Nature-based solutions

- 'Slow the flow'
- Store water in the catchment and slowly release it
- Preparation suitable for smaller floods
- Up to a 20-year flood
- Aligns with other catchment values

NbS feasibility study

Revegetation of upper catchment and floodplain

Catchment woodlands

Runoff pathway management

Riparian woodlands

Floodplain and wetland restoration

Soil and land

management

Headwater drainage

management

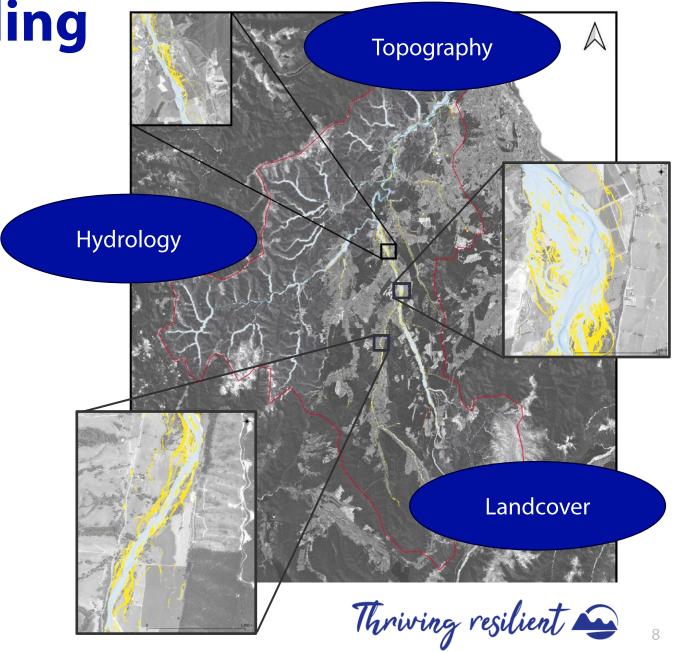
Leaky barriers/dams in-channel and on the floodplain

Floodplain reconnection and storage

River restoration

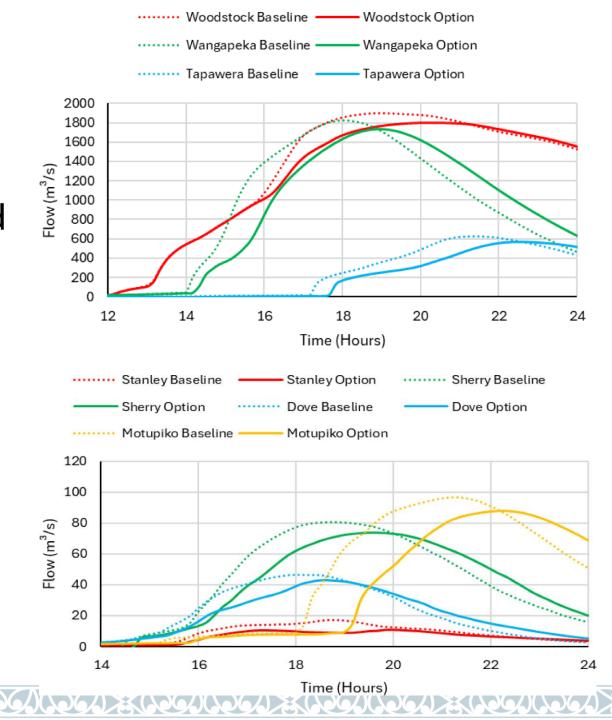
Leaky barriers

Cross-slope woodlands


Offline storage areas

Floodplain woodlands

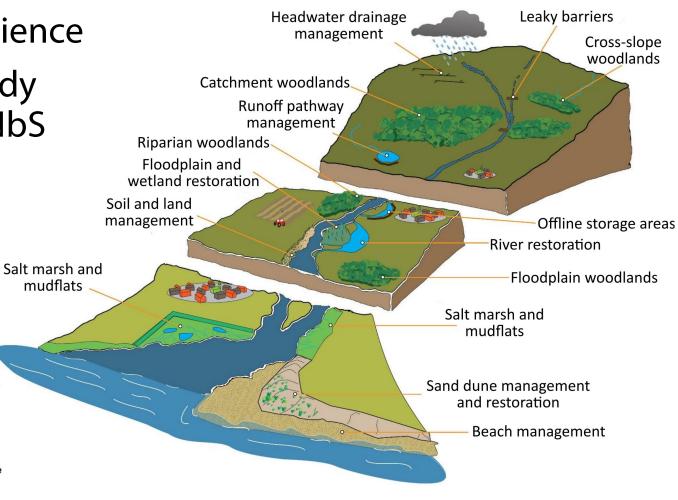
Thriving resilient 👄


NbS feasibility modelling

- Computer hydrodynamic model of the Motueka catchment
- Model calibrated to historic floods
- Future climate-change scenarios included
- Feasibility of NbS evaluated at different points throughout the catchment
- Compare hydrograph without NbS (baseline) to hydrograph with NbS

NbS high-level results

- Increased vegetation decreased flows by 5-27% across the catchment
- Increased connection between river and floodplain had impacts within subcatchments, but less so the main river
- Leaky barriers in the channel and across the floodplain also had localised impacts
- Combos of approaches were the most effective
 - 3-36% decrease in sub-catchments
 - Decreased flows 9% @ Woodstock



Nature-based Solutions looking forward

- NbS: an opportunity for future resilience
- Leverage the results of the NbS study and local knowledge to integrate NbS into MCC and TDC work
- Links into 'Living Rivers' paradigm

Restoring the river reduces hazards and enhances the environment, creating more sustainable riverscapes: Lower flood peaks and increased drought resilience as flood waters can occupy the floodplain, and recede faster after a flood. Connected floodplain allows Greater river and habitat slower, lower energy flooding that diversity = greater biodiversity provides a natural nutrient supply. and carbon capture Improved draiange means no net loss of grazing land. Livestock have time Riparian margin slows flood flows to move away from and bank erosion, filters contaminants flood waters from the water, provides habitat and food, and keeps water cool. Sediment is stored in the channel, rather than flushing it downstream to flood prone areas Fence protects riverbanks from In channel wood traps debris, reducing erosion via trampling, and the risk of downstream blockages. space for river preserves habitiat.

Week to be the total to the total to

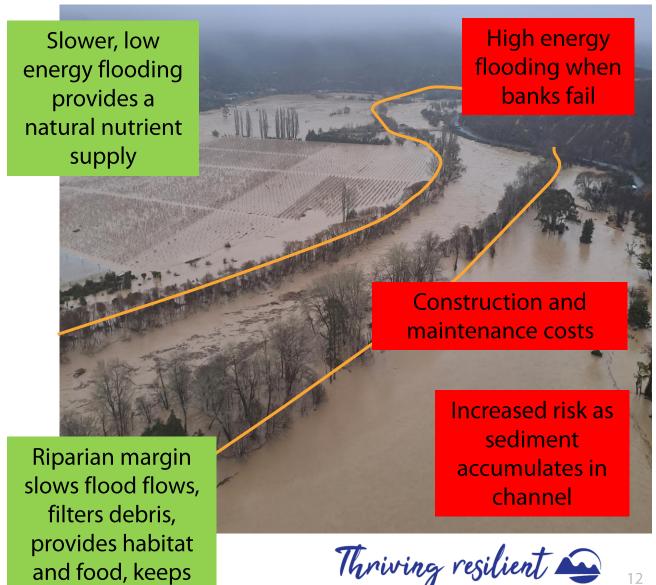
What is flood resilience?

Understanding

Avoiding

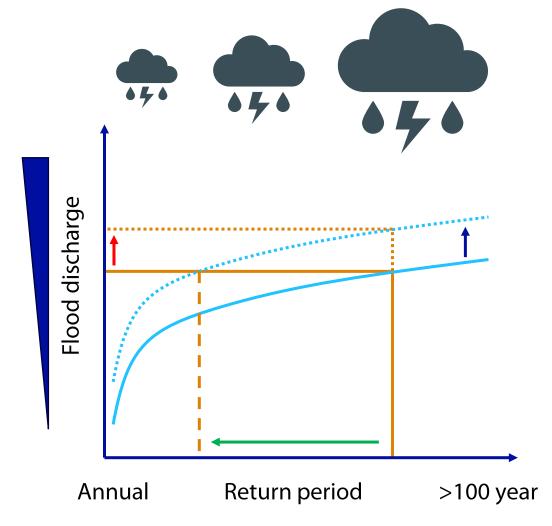
Preparing

Our ability to avoid the effects of flooding and, where we can't avoid it, being well prepared, responding well, and recovering quickly from damaging flood events


Responding

Recovering

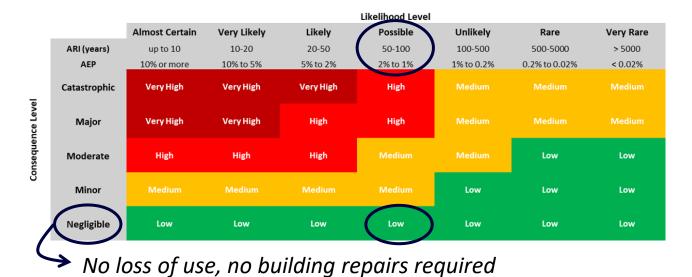
Nature's solution for big floods: floodplains


water cool

- Big floods: 1:50 1:100 year event, 2% / 1% AEP, or larger
- Floodplains accommodate floodwaters during big events
- Room for rivers to 'breathe'
- Functioning floodplains provide valuable 'services'
- Disconnecting the river from the floodplain increases pressure on infrastructure
- Resilience for big floods relies on understanding the role of the floodplain

Big floods and climate change (all floods)

- Disconnecting the river from the floodplain increases pressure on infrastructure
- Infrastructure capacity is further reduced due to climate change
- Climate change puts more water vapour in the atmosphere, creating more rain
- Big floods are going to get bigger
- Today's infrequent big flood is going to occur more frequently in the future


Avoiding the effects of big floods for dwellings

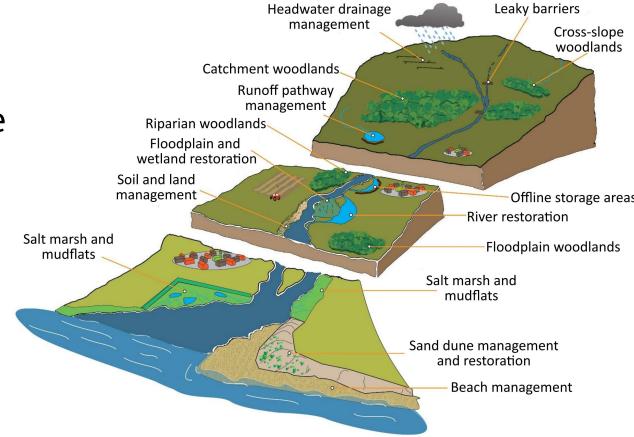
- Big floods are going to get bigger
- Today's big flood is going to occur more frequently
- A safe place of refuge
- For dwellings we need to look out into the future
- Life of dwellings: 75-80, 100 years
- More likely than not that a dwelling on the 1% AEP floodplain will be impacted by a big flood

Planning to avoid the effects of big floods

- Development on floodplains is a national issue
- Nat. Policy Statement for Nat. Hazards
- New regional plans coming
- Understand the role of floodplains
- Get involved in opportunities to shape plans of our floodplains

Hundreds of new builds in Auckland flood zones as councils wait on planning reform

9:53 am on 27 January 2025


The New Zealand Herald

Auckland Council approves 4000 new homes on floodplains since 2023 storms, Huapai residents oppose plans for more

Summing up

- Key components of flood resilience are understanding, avoiding where possible, and preparing
- NbS offer a way to prepare for smaller floods and deliver outcomes for the catchment
- Floodplains have an important function in the catchment
- Climate change will make big floods bigger and more frequent
- Avoid dwellings on floodplains
- Opportunities are coming to input on how the District should plan for resilience in the future

Thank you